

Natrium Capital has looked at the pros, cons and main uses / applications of the significant fuel types which will form the transition to renewable energy. This edition of Chemical Reactions provides an overview of fuel types on the subsequent pages.

There has been significant change in renewable technologies in recent years and they have evolved from partially replacing hydrocarbon fuels with renewables to new types of fuels (hydrogen and ammonia) to new engine concepts such as electric vehicles. With a desire for change, the year 2021 is expected to be the first-time renewable energy surpasses oil and gas as the energy industry's largest area of spending. The pandemic has fuelled the renewable energy transition with overall energy demand falling drastically, resulting in a reduction in CO_2 emissions. This was very promising as it showed that the goals of the Paris Agreement were achievable. Companies and researchers took advantage of this reduction and accelerated the development of renewable technologies.

WIDER PORTFOLIO OF RENEWABLE ENERGY

Bioethanol and **biodiesel** as blended alternative fuels have been common since the 1970s. Although, they were not a popular first fuel option, as both petrol and diesel were cheaper and widely available, increasing concerns about the environment, energy security, and agricultural overproduction in the 1980s led to the increasing popularity of using biofuels. This popularity was further accelerated in 2001 when there was an alltime high in oil prices.

One of the main problems with biofuels is land-use conflict; there are concerns regarding using farmland or agricultural land/sourcing from the rainforest for biomass. However, thanks to technological advancements, the renewable energy portfolio now has more variety and has expanded outside of biofuels.

Alternatives have included using water and air as main feedstock to produce fuel types such as **syngas**, **E-diesel** and **ammonia**. Particularly with syngas, waste gas from industrial facilities and methane from landfills can be captured and used as feedstock rather than releasing them into the atmosphere.

Electricity as an energy source has gained popularity over the past few years with cars running solely off electricity. Electricity can also be easily generated from renewable sources such as **solar**, **wind** and **hydropower**. From using biomass to alternatives from renewable sources and waste feedstock, the problem with land use is addressed and avoided.

Using renewable energy, **green hydrogen** can be produced and used in hydrogen fuel cells. Fuels can also be produced from waste plastics through pyrolysis, contributing to a circular economy. **Pyrolytic oils** have been found to have a high heating value close to conventional diesel, so they have the potential to be used as a diesel alternative or as a blend with diesel.

CHALLENGES WITH RENEWABLE FUEL TYPES

Electricity and hydrogen have become the most prevalent fuel alternatives to traditional fuels, with electricity use being more widespread. However, the main problem with these two alternatives is infrastructure, including the availability of the fuel across networks and the refuelling times.

Hydrogen storage has been a recurring challenge due to its requirement for extreme pressures and cryogenic temperature to stabilise it in a liquid state. Hydrogen is currently only an option for heavy-duty vehicles such as lorries and trucks as they are big enough to hold a large amount of onboard hydrogen. The lack of hydrogen storage technology for smaller vehicles makes it difficult for hydrogen-powered commercial / light-duty vehicles to work efficiently, despite hydrogen fuel cells having a short refuelling time. Therefore, electric vehicles are currently preferred as an alternative for personal transport. Many companies are now installing more EV charging ports, so infrastructure is not as big an issue. However, charging times for electric vehicles can be over 30 minutes and to the consumer, can be seen as a nuisance compared to liquid fuels. Especially for long-distance journeys, extra planning must be done beforehand to map out all the EV charging stations along the journey.

For hydrogen and electricity to become the mainstream fuelling options, there must be further infrastructure developments and technological advancements to make charging vehicles quicker and more efficient. Consumers will be more likely to stray away from purchasing traditionally powered vehicles and be more environmentally wary, ultimately shifting completely away from traditional fuels.

The energy content per litre is less for renewable fuels compared to traditional fuels, making the renewable alternatives more expensive. However, these prices are dropping, and the various carbon taxes on CO₂ emissions is helping to accelerate the shift to using green and low-emission energy sources only.

EU GREEN DEAL

The European Green Deal proposes legislation to tackle the problems from infrastructure to energy poverty. For infrastructure, there are plans to introduce more EV charging points and hydrogen refuelling points along the TEN-T network of Europe to increase accessibility. For energy poverty, there will be a social

Source: European Commission

climate fund available. However, these proposed legislations are still under discussion. The longer the discussions take, the shorter amount of time left to act upon the changes to make a difference.

CONCLUSION

The renewable energy transition is gathering pace. However, there are still some key problems deterring consumers from switching from traditional fuels. To be successful there needs to be collaboration between governments and **business** to improve the supply chain infrastructure for renewable fuels. More developed markets and countries can more easily change their energy habits, but for emerging markets, it will take more time for a significant change to come about.

There is good progress toward greater renewable energy usage, but there should be a constant push towards minimising the effects of climate change and to completely align with the Paris Agreement.

The following tables are intended as a summary and are not an exhaustive list.

CONTACT THE	ALASDAIR NISBET	LAURA MARSH	SOPHIE BEADSMOORE
TEAM	CEO	Director	Analyst
<u>Click here</u>	+44 7767 207 185	+44 7920 473 992	+44 7570 723 639

The information and views contained in this report were prepared by Natrium Capital Limited. It is not a research report, as such term is defined by applicable law and regulations, and is provided for information purposes only. No part of this material may be copied or duplicated in any form or by any means, or redistributed, without Natrium Capital Limited's prior written consent. For a full disclaimer see <u>www.natriumcapital.com/</u><u>disclaimer</u>.

Copyright © 2021 Natrium Capital Limited. All rights reserved. www.natriumcapital.com

SUMMARY OF FUEL TYPES

Fuel Type	Most Common Production Method / Description	Advantages	Disadvantages	Main Use
TRADITIONAL				
Diesel / Petrol	Fractional distillation of crude oil	Most common fuel used	Many emissions	Transport
GREEN – BIOFUELS				
Biodiesel	Transesterification of fats and oils	Carbon neutral	Expensive	Transport
Renewable Fuels / Biofuels	Biochemical and thermochemical treatment of biomass	Produces direct, drop-in fuels	Further investment / develop- ment needed	Transport
Syngas	Gasification of carbon feedstock	Waste gas as feedstock	Inefficient gasification process	Fuels
Ethanol	Fermentation of food grains and crops	Produced from sugars/grains	Land use conflict	Transport
GREEN - HYDROGEN	N Contraction of the second			
Green Hydrogen	Electrolysis of water	Zero emissions	Very expensive	Power
Blue Hydrogen	Steam Methane Reforming - combining high-temperature steam with natural gas	Near-zero emissions	Requires CCUS technology Hydrogen storage is difficult	Power
GREEN – OTHERS				
Electricity	Produced from a variety of energy sources (can be renewable or non-renewable sources)	Stored in batteries	Batteries have a finite life – need replacing	Electricity
Fuels from Plastics	Pyrolysis (thermal degradation) of plastic waste	Helps circular economy	Energy-intensive process	Transport
Solar Power	Energy from the sun converted into thermal or electrical energy	Renewable	Weather dependent	Power
Hydropower	Water flow is used to turn turbines to generate electricity	Renewable, reliable	Expensive to build dams	Electricity
Wind Power	Wind used to turn turbines to generate electricity	Renewable, space efficient	Weather dependent	Electricity
OTHER – E-DIESEL				
E-Diesel (Synthetic Fuel)	Produced from carbon dioxide, water using electricity to create "blue crude", which is then refined with the Fischer- Tropsch Process	No biomass required, so no land use conflict	Still emissions when burnt	Transport
E-Diesel (Ethanol-Diesel)	Blends of up to 15% of ethanol in fossil diesel by volume	Ethanol used can be derived from renewable sources	Needs to be used as a blend with fossil diesel	Transport
OTHERS				
Ammonia	Reverse fuel cell technology to produce ammonia from air and water	Can be burnt or be "cracked" into hydrogen	NOx emission problems	Transport

OVERVIEW OF FUEL TYPES

Fuel Type	Description / Method of Production	Advantages	Disadvantages	Main Uses / Applications
		TRADITIONAL		
Diesel / Petrol	 Derived from crude oil by fractional distillation Recovered from oil wells by drilling 	Most common transportation fuel used is petrol and there are many existing and new oil wells to recover more petrol	large quantities of greenhouse gases	PlantsMachinery
		GREEN — BIOFUE	ELS	
Biodiesel	 Derived from biomass consisting of long-chain fatty acids esters Produced by transesterification of fats and oils into biodiesel and glycerin Most typically, a base-catalysed transesterification is performed using NaOH – as it requires low temperatures and pressures and has a conversion rate of 98% The fatty acid biodiesel will depend on the oil/fats used 	 "Carbon neutral" Can be produced from straight vegetable oil, animal oil/fats, tallow and waste oils The side product, glycerin can be refined & used for pharma purposes Biodegradable and non-toxic – meaning spillages present far less of a risk than fossil diesel spillages Higher flash point than fossil diesel so is safer in a crash 	 Not completely carbon neutral as CO₂ is released during production of fertilisers used to fertilise oil crop fields The whole process from transesterification refining to drying and transporting all require energy input – which will lead to the release of greenhouse gases Currently more expensive than fossil diesel Concerns about B100 (100% biodiesel) and its impact on engine durability 	and enginesMostly used as a blend
Renewable Fuels / Biofuels	 Derived from treating biomass through various processes to produce hydrocarbons chemically identical to petroleum -based fuels Hydrotreating (main route), pyrolysis, gasification, hydrothermal processing, etc. (cont'd) 	 Can be used "neat", as drop-in fuels Much of the infrastructure needed is pre-existing - e.g. oil refineries can be converted with co-processing units Compositionally advantageous - high cetane number, low density, low temp cloud points 	 Most common renewable fuel is renewable diesel produced via hydrotreating lipid-based biomass in existing refineries - little incentive for petroleum companies to transition Investment in other conversion technologies lacking – various technologies still in R&D or pilot-stage due to this 	Used without blending

Fuel Type	Description / Method of Production	Advantages	Disadvantages	Main Uses / Applications
		GREEN — BIOFUE	LS (cont'd)	
Renewable Fuels / Biofuels (cont'd)	 Derived from variety of biomasses: Lipids (vegetable oils, animal fats, greases) Cellulosic material (crop residues, dedicated energy crops & woody (woodland, forest) biomass 	 2nd gen. biofuel feed so no land-use conflict (unlike 1st gen. feed) 		
Syngas	 A gas fuel that consists of hydrogen and carbon monoxide, with trace carbon dioxide Gasification of carbon containing feedstock produces syngas Syngas can be manipulated in many ways to form different compounds/fuels 	 Waste gas from industrial facilities such as steel milling and petroleum refining, can be captured and used to produce syngas, rather than releasing them into atmosphere Methane from landfills can also be used as feedstock Fuels produced from syngas are compatible with existing engines and infrastructure 	 Syngas storage is not common, and syngas is usually fed directly for use, but if to be stored, there are potential hazards associated with the failure of proper syngas storage as syngas 	 Using Fischer-Tropsch (FT) process to convert syngas to liquid hydrocarbons. Then hydrocracking to break down long hydrocarbons to produce synthetic fuels e.g. jet fuel and diesel Syngas can be fermented to produce ethanol, methane and acetic acid Novel use – refining syngas to obtain hydrogen to power hydrogen fuel cells
Ethanol	 Using food grains and crops with high starch and sugar content as feedstocks to produce ethanol Most common method is fermentation Corn is the most common feedstock in US Sugar beet and sugar cane are the most common feedstock in the rest of the world 	 Produced from sugars and grains Great potential with cellulosic ethanol which is derived from trees, grasses and agricultura residues. They require less cultivation, fertilisers and water to grow than grains so they can be grown on lands tha are not suitable for growing food crops 	 has also become a challenge for carbon offset The fermentation process involves burning coal/nat. gas for heat sources Lower energy content/gas mileage 	 Used in car engines Used as a blend with petrol/ diesel All vehicles made since 2011 in the UK are compatible with E10 (petrol with 10% ethanol) Not compatible with boats, petrol-powered garden equipment or machinery

Fuel Type	Description / Method of Production	Advantages	Disadvantages	Main Uses / Applications
		GREEN — HYD	ROGEN	
Green Hydrogen Blue Hydrogen	 Production of hydrogen from renewable energy, mainly through electrolysis Hydrogen that is derived from natural gas through the process of Steam Methane Reforming (SMR) or Auto Thermal Reforming (ATR) SMR involves combining high-temperature steam with natural gas, in the presence of a catalyst, to extract hydrogen Carbon monoxide is also produced but converted into CO₂ by adding water – producing more hydrogen CO₂ emissions are captured and stored using Carbon Capture, Utilization and Storage (CCUS) technology – resulting in nearly pure hydrogen 	efficient	 Most expensive way to produce hydrogen If no CCUS technology is used, CO₂ will be released – instead of Blue Hydrogen, it will be Grey Hydrogen For both Highly flammable gas Large scale adoption of hydrogen fuel cell technology for automotive applications wil require new refuelling infrastructures to support it Difficult to store and transport hydrogen – requires high pressures and cryogenic temperatures Low energy density by volume so large quantities must be stored 	
		GREEN — OT	HERS	
Electricity	 Can be produced from a variety of energy sources: natural gas, coal, nuclear energy, wind energy, hydropower and solar energy Stored in batteries 	 No emissions, if the electricity is generated from renewable sources Reduce fuel costs Infrastructure available for flexible charging for electric vehicles 	 Hybrid and plug-in electric vehicles are usually more expensive Batteries have a finite life – needs replacing 	 Transport Domestic use Commercial and Industrial use – plants Machinery Electronics

Fuel Type	Description / Method of Prod.	Advantages	Disadvantages	Main Uses / Applications
		GREEN — OTI	HERS (cont'd)	
Fuels from Plastics (through pyrolysis)	 Derived from the thermal degradation of plastic waste at different temperatures (300 –900°C) in the absence of oxygen, to produce liquid oil Using plastic bags, disposable cups and plates, and water bottles (polyethylene (PE), polypropylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) plastics, respectively) 	 Can help achieve a circular economy in any country Pyrolysis oil holds more energy than coal and some other fuels Pyrolysis oil has a high heating value close to conventional diesel – potential to be used as an alternative source of energy and as transportation fuel after refining/blending with conventional fuels Pyrolysis oils have high aromatic content, such as benzene, toluene and styrene – which can be refined and sold in already established markets 	• Emissions/gases produced from pyrolysis of some plastic waste such as PVC are toxic and therefore the pyrolysis emission treatment technology must be further refined to achieve maximum environmental benefits	 Fuels, power, heat and other valuable chemicals and materials Produced aromatic compounds can be used as raw material for polymerization in various chemical industries Pyrolytic liquid oil can be used as an alternative to conventional diesel as a blend – 20:80% blend ratio of pyrolysis oil and conventional diesel, respectively has shown to give similar engine performance to 100% conventional diesel
Solar	• Using energy from the sun that is converted into thermal or electrical energy	 Cannot run out of solar energy Reduces Electricity Bills Low Maintenance Costs Solar battery storage systems to store excess energy – more efficient 	 Weather dependent Expensive to install solar panels Uses a lot of space 	 Converted into electricity using photovoltaics panels Used to generate thermal energy
Hydro	Flow of water is used to turn turbines to generate electricity	 Low emissions Renewable and water flow is usually reliable – generation at any time of day Output of electricity can be adjusted according to demand Pumped storage method uses electricity to pump water back to the reservoir in off peak periods 	 Expensive to build dams Environmental consequences Natural flow of river is affected; Affects fish migration patterns; Electricity can be severely reduced if there is a drought Difficult to finding suitable locations with a large year-round water supply and is close enough to existing power lines 	Generating electricity

Fuel Type	Description / Method of Production	Advantages	Disadvantages	Main Uses / Applications
		GREEN — OTHERS	; (cont'd)	
Wind	Wind used to turn turbines to generate electricity	 Renewable, clean energy Space efficient – space in between each turbine can be use as farmland 	 Weather dependent Manufacturing, transportation and installation of wind turbines releases emissions Environmental impact A threat to flying wildlife Limited locations – area with strong, reliable wind are usually distanced from infrastructure so there must be new infrastructure to connect the wind farm to the power grid 	Generating electricity
		GREEN — E-DIE	ESEL	
E-diesel (Synthetic fuel)	 Produced from carbon dioxide, water, and electricity (from renewable energy sources) to create "blue crude", which is then refined with the Fischer-Tropsch Process to generate E-diesel Electrolysis of water Reaction of hydrogen and carbon dioxide to form syngas Syngas reaction to produce blue crude About 80% of blue crude can be converted into e-diesel 	 Carbon neutral fuel – if the ener sources to drive the process are from carbon-neutral sources No biomass required – so no problems with land use Cleaner energy than fossil fuels less NOx emissions E-diesel contains no sulfur or aromatics Has a high cetane number so it burns readily and completely 	in internal combustion engines	 Suitable for some aircraft with diesel engines Compatible with all diesel engines – can be used as a blend with typical fossil diesel or as a replacement fuel in automobiles

Fuel Type	Description / Method of Production	Advantages	Disadvantages	Main Uses / Applications
		GREEN — E-DIESE	EL (cont'd)	
Ethanol-	in fossil diesel by volumeEthanol can be derived from	 Less PM (particulate matter) emissions compared to using just fossil diesel Improves engine power and specific fuel consumption (SFC) 	 Needs to be used as a blend with fossil diesel Requires an additive package to help maintain blend stability and other properties (cetane number and lubricity) Effects on NOx, CO and HC emissions are unknown and contradicting in various reports 	Compatible with most diesel engines
		OTHERS	3	
Ammonia	 Using reverse fuel cells to produce ammonia from air and water with renewable energy – a far more environmentally friendly technique than the Haber-Bosch process Water reacts at the anode to make hydrogen ions (H+), which migrate to the cathode where they react with nitrogen (N₂) to form ammonia – this reaction is efficient, but slow 	 Ammonia is a flammable gas, but the risk of fire is low compared to other fuels Ammonia liquefies easily under light pressure and chilling (compared to hydrogen) – easy to transport to power plants Can also be "cracked" into hydrogen and used for fuel cell vehicles 	ammonia fuel requires a suitable sensing system and additional safety systems such as ventilation and water sprays to dissolve ammonia	 Ammonia power plants Converted into electricity in a power plant customized to burn ammonia Cracked to form hydrogen to use in traditional fuel cells The energy penalty for converting the hydrogen to ammonia and back is roughly the same as chilling hydrogen Far more already existing infrastructure for handling and transporting ammonia than hydrogen Ammonia driven marine operations Used in internal combustion (IC) engines Fertilizer